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ABSTRACT 

The volume average of t he  s t r a i n  tensor i n  a body moving i n  an inverse- 

square force f i e l d  i s  evaluated. The calculat ion i s  car r ied  out assuming the  

s a t e l l i t e  t o  be an i so t ropic  e l a s t i c  body whose center of mass moves i n  a 

planar o rb i t .  An approximate expression, i n  terms of i t s  volume and e l a s t i c  

proper t ies ,  i s  presented f o r  the  s t r a i n  energy i n  the  s a t e l l i t e .  Using t.his 

expression the  equation of planar l i b r a t i o n a l  motion i s  wr i t ten  expl ic i ty .  

This equation i s  discussed f o r  both c i r cu la r  and e l l i p t i c  o rb i t s  and i s  

modified t o  include the  e f f e c t s  of energy d iss ipa t ion  i n  the body. It is  

shown t h a t  the  concept of Adiabatic Invariants  allows one t o  analyze the 

influence of slow changes i n  the mater ia l  volume and e l a s t i c i t y .  

* 
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I. INTRODUCTION 

This paper a i m s  t o  study the e f f ec t s  of mater ia l  e l a s t i c i t y  on the 

l i b ra t iona l  motion of an a rb i t r a ry  shaped s a t e l l i t e .  

influence of the e l a s t i c  behavior on the l i b ra t iona l  frequency i s  determined. 

The approach adopted i s  qui te  general i n  t h a t  the spec i f ic  shape of the 

s a t e l l i t e  i s  not prescribed other than t o  assume t h a t  the  o rb i t  plane of i t s  

center of mass coincides with a pr inc ipa l  plane of the  s a t e l l i t e .  Thus the 

in-plane l i b r a t i o n a l  motion i s  considered t o  be uncoupled from the out-of- 

plane mot ions 

In par t icu lar ,  the 

The e l a s t i c  behavior is  assumed t o  be describable within the context of 

the  c l a s s i ca l  theory of inf ini tes imal  e l a s t i c i t y .  Accordingly the body forces,  

i n e r t i a l  and gravi ta t iona l ,  t o  which the  s a t e l l i t e  mater ia l  i s  subjected are  

computed as i f  the  s a t e l l i t e  were r ig id .  However since the mater ia l  i s  actual ly  

deformable it contains s t r a i n  energy of deformation which d i r ec t ly  influences 

the l i b r a t i o n  frequency. 

The desire  t o  avoid the  specif icat ion of the shape of the s a t e l l i t e  removes 

the  analysis of the e l a s t i c  behavior from the normal c lass  of boundary value 

problems i n  the  mathematical theory of e l a s t i c i t y .  Therefore an averaging 

method i s  used t o  compute an approximate s t r a in  energy density the knowledge 

of which enables one t o  write the d i f f e r e n t i a l  equation f o r  the l i b ra t iona l  

motion. This equation, whose form depends upon whether or not allowance i s  

made for energy diss ipat ion,  has been derived previously fo r  per fec t ly  e l a s t i c  

mater ia ls  i n  a special  case [1,2] . For materials w i t h  s ign i f icant  in te rna l  

f r i c t i o n  the  decay time of the  l i b r a t i o n a l  o sc i l l a t ion  can be wri t ten i n  terms 
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of a qual i ty  fac tor ,  Q, the  e l a s t i c  constants and the  volume of t he  material .  

Slow changes i n  the  physical p roper t ies  of t he  body can be examined by con- 

s t ruc t ing  an Adiabatic Invariant of the motion. 

11. THE EmRGY OF DEFORMATION 

Assuming the  o r b i t a l  and l i b r a t i o n a l  motions t o  be uncoupled one can 

wr i te  the  equation which determines the planar l i b r a t i o n a l  motion of a r i g i d  

body i n  the  form 

The angle of l i b r a t i o n  i s  denoted by cp, the  pos i t ion  of the center of mass 

by (Rc,e)  and the  g rav i t a t iona l  parameter by K. A t  the  center of mass the 

p r inc ipa l  moments of i n e r t i a  a re  A, about the  l i n e  from which cp i s  measured, 

B,and C about the  axis normal t o  the  o r b i t  plane. 

i s  i l l u s t r a t e d  i n  Fig. 1. To modify equation (1) i n  order t o  make allowance 

f o r  the  e l a s t i c  deformation of the  orb i t ing  body it i s  necessary t o  determine 

the  work done i n  t h i s  deformation by the  body forces .  It can be shown t h a t  

t he  body force,  per unit mass, act ing at  the yos i t ion  (x,y) is 

This geometric configuration 

* 

f = J ( x . P ~ - Y P ~ )  + j (xP  +yp4) 
jLn M 3  

i n  which 
K 2 P1 = (@+Q)* + 3 ( 3  cos cp - 1) 
Re 

3 K  
R 

P2 = - 3 (CC + 1) Sin cp COS cp 
C 

* 
The d e t a i l s  a r e  presented i n  the  Appendix 
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p3 = 2j (CI - 1) Sin cp cos cp 

RC 

p4 = (Q + 6 )  2 K  + ( 3  Sin 2 cp + 1) 

and 

CI = (B  -A)/C (7 )  

It follows from the  theory of inf ini tes imal  e l a s t i c i t y  C3] t h a t  the 

s t r a i n  energy density, W, i n  a homogeneous i so t ropic  body i s  

w = 1: A. (eii) 2 + P ei j  e i j  
2 

/ 
where the  Lame 

tensor created by the  body force d is t r ibu t ion  given by equation ( 2 ) .  

Constants a re  represented by h and p and e i s  the s t r a i n  i j  

An 

exact evaluation of W would necessi ta te  the  specif icat ion of the geometric 

shape of t he  body and the  solut ion of the per t inent  boundary value problem. 

Since t h i s  specif icat ion i s  prec ise ly  what it i s  sought t o  avoid i n  the  present 

analysis one has t o  be content with an estimate of the  density W. This es- 

timate can be achieved by using the  Be t t i  Reciprocal Theorm [3) t o  obtain the 

volume average of the s t r a i n  tensor.  A po ten t ia l ly  awkward feature  of the 

application of the  theorem - the  evaluation of surface in tegra ls  - does not 

a r i s e  here because the surface o f t h e  body i s  stress f r ee .  The volume averages 

of the  s t r a in  tensor components are found f o r  symmetrical bodies t o  be 

- e = [(B+C-A)Pl - (5 (C+A-B)P4] /2EV xx 

- e = [(C+A-B)P4 - 0 (B+C-A)PJ /2EV 
YY 

( 9 )  
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- 
e =z , = -0 [(B+C-A)P1 + (C+A-B)Pq] /2EV 

- e = [(B+c-A)~~ - (C+A-B)P2] /4pv 
XY 

and 
- - 
e = e  = O  

YZ zx 

where V is  the volume of the  body. The well-known re la t ionships  

have been used i n  the  der ivat ion of t he  averages i n  order t o  simplify t h e i r  

f ina l  form. Direct subs t i tu t ion  i n  equati on (8) and considerable a lgebraic  

reduction produces 

2 2  W = A (b+cp) * 4  + A2( b+b)2 + A Sin 4 cp -i- A4 Sin 2 Cp + A ( e@))  Sin cp (14) 1 3 5 
i n  which 

= ($* + ? - 28yo)/8Ev2 A1 

A = 9 8  [s2+ y2- Pya -8(ltcr) 8 2 2  y /C 2 1 
3 C 

A4 = K 2 [2p2+ 3Y2- 38y0 +- 36( l+0) $ 2 2  Y /C 2 ] /4E$R6 
C 

= 3K(Y2 - D2)/4EV?R3 A5 C 
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@ = B + C - A  

and 

y = C + A - B  

If the  center of mass of the  s a t e l l i t e  i s  moving i n  an e l l i p t i c  o r b i t  of 

semi-major axis a and eccen t r i c i ty  e, the  parameter Rc entering i n  equations 

(16), (l?), (18) and (19) ma,y be expressed i n  the  form 

111. THE EQUATION OF LIBRATION 

Adopting the  form (14) f o r  the  s t r a i n  energy density one can wri te  the 

Lagrangian of the  motion as 

( B  - 2A) L ="(h2 + R2 i2) + - ( b  C + 4) 2 K m  + -  - - K 
2 2R: 2 c  c 

2 3K ( B  -A) Cos cp + VW +3 
2RC 

(23) 

which leads,  r e s t r i c t i n g  the analysis  t o  O(cp) ,  t o  t h e  bas ic  l i b r a t i o n  equation 

-[(' d t  d + 2 2K A 6 ) ( 6  + GI)] + [s (13-A) - 
R3 

C C 

and 
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In  wri t ing the  Lagrangian given by equation (23) it i s  assumed t h a t  the 

k i n e t i c  energy of the e l a s t i c  modes of deformation is negl igible  i n  comparison 

with the o r b i t a l  and l i b r a t i o n a l  energies. Furthermore it should be remarked 

tha t  i n  t h e  r i g i d  body l i m i t ,  E 

equation (24) becomes equation (1) t o  O(cp). 

t o  wri te  equation (24) with 8 r a the r  than t i n  the r o l e  of independent var iable .  

This transformation which can be made by invoking Kepler ' s  Second Law 

O0,  both As and tend t o  zero and hence A7 
It i s  convenient i n  some cases 

r e s u l t s  i n  the  d i f f e r e n t i a l  equation 

2 2 

de 
(l+eCos0) [C + 2A6 8 ' ( l+eC0s8)~]  % - 2eSine [C + 5A60 ( l+eC0s8)~]  -$f 

+ [3(B-A) - 2A702(1+eCos8)3] ep = 2eSin0 [C!+SA60 2 (l+eCose) 

w i t h  

Equations (24) and (28) w i l l  be discussed separately fo r  c i r cu la r  and e l l i p t i c  

o r b i t s  respect ively 

N. CIRCULAR ORBITS 

In  the  case e = 0 equation (24) s implif ies  t o  
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which corresponds t o  a simple harmonic osc i l l a to r  with a frequency, w, 

determined by 

3(B-A) - 2A7n 2 
2 w2 = [ 

c f 2A6Q 

Equation (31) provides a simple e a s i l y  applied formula f o r  estimating the 

frequency of planar l i b r a t i o n  of a homogeneous i so t ropic  body of a rb i t r a ry  

shape, volume V, p r inc ipa l  moments of i n e r t i a  A, By and C, Lam; Constants 

1, p and whose center of mass i s  moving i n  a c i rcu lar  o rb i t  with o r b i t a l  

angular veloci ty  R .  The derivation of t h i s  formula was the primary purpose 

f o r  undertaking the  present analysis.  Tha t  W should be l e s s  than the r i g i d  

body frequency R 3(B-A)/C is  t o  be expected. In  f a c t ,  by u t i l i z i n g  

equations (20) , (21) ,, (25) and (26) one can show t h a t  i f  B > A > C then As 

and A are  both necessar i ly  posi t ive.  Accordingly, it i s  c lear  t h a t  the 

effect  of the  mater ia l ' s  e l a s t i c i t y  is  t o  decrease the  frequency of l i b ra t ion  

below the frequency a t t r i bu ted  t o  the  same body were it r ig id .  Two fur ther  

I 
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aspects of equation (30) may be remarked upon. 

F i rs t ly , ,  i f  the  body possesses appreciable in t e rna l  f r i c t i o n  the decay 

time of the l i b r a t i o n  can immediately be writ ten,  in ' t e rms  of a mater ia l  

qua l i ty  f ac to r  Q9 i n  t he  form 2Q/W. Here qua l i ty  f ac to r  i s  defined, as usual, 

t o  be 
= 2n energy s tored 

energy l o s t  per period 

and W i s  given by equation (31). 

t he  Solar System are available Secondly, i f  the  analysis i s  t o  be 

Estimates of Q fo r  na tura l  s a t e l l i t e s  i n  

applied t o  na tura l  s a t e l l i t e s  whose physical propert ies  may change over long 

time periods one can wri te  t h a t  
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- 
E/M = constant (32) 

where represents the average energy i n  the  l i b ra t ion .  Equation (32) 

r e f l e c t s  the  f a c t  tha t  the  act ion i s  an Adiabatic Invariant of the 

l i b r a t i o n a l  motion f o r  slow changes i n  the bas ic  parameters. Expl ic i t ly ,  

i n  t he  present case one has 

cp 4 2  hz [3(B-A) - 2A7n2] ( C  + 2A6hz 2 ) = Constant 
0 

(33) 

with cp representing the  amplitude of the  osc i l l a t ion .  
0 

V. ELLIPTIC ORBITS 

The form of equation (28) as it stands i s  not par t icu lary  su i ted  t o  a 

discussion of the  l i b r a t i o n  of a body i n  an e l l i p t i c  o rb i t .  The equation 

can be cas t  i n t o  a more convenient form by introducing the transformation 

Y = (1 + e COS 9) cp (34) 

In  terms of the new variable  Y equation (28) becomes 

2 ( l + e C ~ s e ) ~ ]  (l+eCosO) eCos 0 + 6e2A6n2(l+eCose) Sin20 

-l 

+ ( 1 ) [3(B-A) -2A h12(l+eCos8) 
l+eCos 0 7 
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The solution of t h i s  equation can be found as follows as a power s e r i e s  

i n  the eccent r ic i ty  e (0 < e < 1). Let 
a3 

Y = C enYn 

n=o 

and equate l i k e  powers of e on both s ides  of equation (35). This process 

leads t o  a s e t  of d i f f e r e n t i a l  equations which can be solved i n  sequence. 

The present discussion w i l l  be confined t o  t h e  f irst  two of these equations 

merely t o  demonstrate t he  method. One f inds  

0 - + (a1 - a2) Yo = o 
de2 

and 

+ (a +2a2-1) Yo case + 2a4 Sine 1 

where 

a = 3(B-A)/(C + 2Agn 2 ) 
1 

a 2 = 2A7Q2/( C + 2A6Q2) 

"3 = 2A6Q2/(C + 2A6Q2) 

(37) 

(39) 

(40) ' 

10 



The solut ion of equation (37) is  

1 1 
Y = c0 s i n  (al-a2)2 e + D COS (a  -a )" e 

0 0 1 2  (43) 

The homogeneous solut ion of equation (38) is  of similar form and i t s  

pa r t i cu la r  solution, which m a y  be found by the  method of var ia t ion of 

parameters, i s  

\ 1 ( a1+2a2- 1) 
Y 1 = [  4u + 4 3  U] x {l+p)CoSinr8 -(l-q)CoSins@ -(l+p)DoCosrB +(l-q)D 0 Sins8 

r 

+ fa3 { (l-p)CoSinrO -I- (l+q)CoSinsB + (l-p)DoCosrB + (l+q)D 0 COS 

Sin 8 + 2a4 
a -a -1 1 2  

(44) 

i n  which 

-1 1 
2(al - a2)F + 1 = p 

-1 1 - 
2(al - a2)" - 1 = q 

This solut ion process may be continued s t ep  by s t ep  t o  the  required degree 

of accuracy and the  influence of t he  o r b i t a l  eccent r ic i ty  on the  l i b r a t i o n  

subsequently analyzed. This fur ther  development w i l l  not be presented here 

however 
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I V .  CONCLUSIONS 

The l i b r a t i o n a l  frequency of a r b i t r a r i l y  shaped e l a s t i c  bodies can 

be represented approximately i n  a r e l a t ive ly  simple way. 

t a t ion ,  equation (31), i s  based upon a generalization of the c l a s s i c  

McCullagh Formula, f o r  the  grav i ta t iona l  po ten t ia l  of a r i g i d  body i n  a 

Newtonian Force Field, t o  include deformation energy. The approximate 

nature of the  generalization a r i s e s  because the  non-specification of the 

body's exact shape precludes an exact calculation of i t s  e l a s t i c  s t r a i n  

energy. The modification necessary t o  allow f o r  i n e l a s t i c  behavior i s  

immediate i f  a Quality Factor Q i s  available.  Consequently both na tura l  

and a r t i f i c i a l  bodies may be t rea ted .  I n  the  former case the e f f ec t s  of 

slow changes i n  the  physical parameters may be examined by constructing an 

Adiabatic Invariant e In  the l a t t e r ,  where conceptual s a t e l l i t e  designs 

vary widely i n  geometric shape, the  general i ty  of the formulas f o r  the 

l i b r a t i o n  frequency and the s t r a i n  energy, though approximate, should prove 

useful. The extension of the  analysis t o  cover l i b r a t i o n a l  motion i n  t h e  

f i e l d  of two centers of force proceeds i n  a manner d i r ec t ly  similar t o  t h a t  

f o r  a s ingle  center of force presented i n  t h i s  paper. 

This represen- 
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Fig. 1 Angle of Libration and Principal  Axes. 

x 

Fig. 2 Coordinate Systems to Determine Body Force. 
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APPENDIX 

T h i s  appendix is  devoted t o  out l inlng the s teps  i n  the  calculat ion 

of the  body force per un i t  mass act ing on the  s a t e l l i t e .  The force is  

composed of the  g rav i t a t iona l  force,  and the react ion forces associated 

with the accelerat ions of the  s a t e l l i t e .  Referring t o  Fig. 2, l e t  XYZ 

be an i n e r t i a l  coordinate system w i t h  or ig in  at  the  focus of the o rb i t ,  

X-axis directed toward the per icenter  and Z - a x i s  normal t o  the o rb i t  

plane. The xyz system of axes is  f ixed i n  the  s a t e l l i t e  w i t h  or ig in  at 

the  center of mass and axes coinciding with the  p r inc ipa l  axes of i n e r t i a .  

The z-axis i s  p a r a l l e l  to t he  Z -  axis. Then 

.. e. .. 
R = R  + z  
w J-JC 

with . .  .. ‘2 + (2Rc0 + R e o )  = (Re - Reo ) 
.. .. 
R 
IWC 

and 

.. .. .. 
i n  which 

r e l a t i v e  t o  the  xyz system and rg) i s  the r e l a t i v e  angular ve loc i ty  of the  

and a re  calculated r e l a t i v e  t o  the  XYZ system, zr and Cr 

two systems. Thus 

On using the  f a c t  t h a t  t he  center of mass i s  moving i n  a Keplerian Orbit 

and t h a t  the  problem i s  being considered within Inf in i tes imal  E l a s t i c i t y  

Theory one f inds  
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7 
1 W  

.. .. * 2  
+ [- Sin cp - ( e  + cp )  r s i n  5 + ( 0  + cp>r cos 5 j 

R% 

where t an  5 = y/x. Substi tution from t h e  planar l i b r a t i o n  equation 

.. *. 
e + c p = -  3c 3' ("-A) s i n  cp cos cp 

C 
R 

produces the  form 

- 2  1 
+ [- -$ Sincp - (6 + S) r Sin 5 - (F)r Cos5 Sincp Coscp' j (A6) 

R3 -1, 
C C 

m e  gravi ta t iona l  force -per un i t  mass i s  

3 0  
R3 

Cos5 + - COS cp COS ( 5  + cp)  Kr 
Coscp - - 

R3 
C C 

= E- 
C 

30 sincp cos ( 5  + cp)  I d  Kr 

R3 
+ sincp - - Sin5 - - 

R3 
C C C 

+ o($) 
C 

R 
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The t o t a l  body force per un i t  mass i s  accordingly 

where the  notation 

P = 3 (a + 1) sincp coscp * R3 
C 

- 1) Sincp cosy 

' 2  K 2 
p4 = ( cp  + 8) + - (3  Sin cp + 1) 

R3 
C 

and 

a = ( B  - A)/C 

i s  used. Equation (A8)  coincides w i t h  equation (2)  of t h e  main t ex t .  


